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'1. I N T R O D U C T I O N  The one-dimensional DPL model [2] relating heat flux to 
temperature gradient is 

1.1. Scope 
This work derives a solution for transient temperature in 

a semi-infinite slab subjected to constant heat flux at its 
surface, while governed by the non-Fourier "dual phase lag" 
(DPL) model [1, 2] of  heat conduction developed recently. 
The solution shows temperatures predicted with the DPL 
model can differ significantly from predictions based on the 
classical model of  Fourier's Law. 

Interest in the DPL model should grow in the near future 
because it shows good agreement with experiments across 
a wide range of leagth and time scales [3], including the 
"microscale" range of increasing importance. Hence, the 
solution derived here will permit quick estimates of DPL 
behavior for practical situations, such as laser heating of 
semiconductors during fabrication of microscale electronic 
devices. Also, this solution will help test numerical solution 
methods likely to be developed for the model. 

The first part of  tills work uses the DPL model to derive a 
solution for transient temperature in a semi-infinite slab with 
constant surface ternperature. In the second part, this solu- 
tion serves as the starting point for deriving the desired 
solution for constant surface heat flux. Also, the solution for 
constant surface te~aaperature derived in the first part is a 
convenient alternative to others published previously. 

Reference [1] also uses the DPL model to derive a solution '\, 
for a semi-infinite ,,;lab with constant surface temperature, 
using an approach similar to that taken here. However, the 
solution in [1] is not adopted here, as discussed in the Appen- 
dix. 

1.2. The DPL mode,r 
The DPL model accounts for the non-zero times required 

by heat flux and temperature gradient to gradually become 
established in response to thermal disturbances (e.g. an 
imposed heat flux). In contrast, Fourier's Law assumes heat 
flux and temperatu:re gradient become established immedi- 
ately (response time of  zero). Although Fourier's Law is 
usually very accurate, modeling this gradual response is 
essential for accurate predictions of transient temperature 
during, for example'., microtime (<  10 ~2 s) laser heating of  
metal thin films ( ~< Ii #) [3]. Here, the gradual response occu- 
pies the time of  laser heating. Consequently, predictions 
based on Fourier's Law do not capture the behavior of  
temperature corresponding to the gradual response. Mod- 
eling this gradual response can also be important on the 
"macroscale" where length and time scales are relatively 
large, as in transient heating of  sand [1] involving scales on 
the orders of  0.01 m and 1.0 s. 

aq OT ~2T 
q"l- Tq ~ = - k  ~x --kzr ~ x (1) 

where the "thermal lags" (delays) "~q and ZT are approximately 
the times needed for gradual response of  heat flux and tem- 
perature gradient, respectively. Further, ¢3q/St and 02T/Ot Ox 
represent transient behavior of  heat flux and temperature 
gradient during this response. After the gradual response is 
complete, heat flux and temperature gradient achieve the 
values given by Fourier's Law. 

In general terms, Zq and ZT are interpreted as non-zero 
times accounting for the effects of  "thermal inertia" and 
"microstructural interaction," respectively [3]. Hence, Zq is 
the delay in establishing heat flux and associated conduction 
through a solid. This delay tends to induce thermal waves 
with sharp wave-fronts separating heated and unheated 
zones in the solid. However, r r  is the delay in establishing 
the temperature gradient across the solid during which con- 
duction occurs through its small-scale structures. Thus, Zr 
smooths the sharp wave-fronts of Zq by promoting conduc- 
tion, resulting in non-Fourier diffusion-like conduction. Ref- 
erences [1] and [3] provide specific interpretations of  the lags 
for several situations and conditions of applicability for the 
DPL model. 

Values for thermal lags are typically very small for con- 
\\tinuous solids, implying the immediate response of  Fourier 's 
L a w  is usually an accurate approximation except for very 
small periods of time after thermal disturbances. For  exam- 
ple, with gold [2] "Cq ~ 0.7 × 10 -12 S and zr ~ 89.0 x 10 -12 s. 
However, for non-continuous solids the lags can be relatively 
large, shown by Zq = 8.9 s and Zr = 4.5 S for one type of  sand 
[1]. 

Equation (1) reduces to the non-Fourier "Cattaneo Ver- 
notte" model underlying hyperbolic heat conduction [4, 5] 
by setting zz = 0. Further, setting Zq = Zr = 0 (immediate 
response) reduces the equation to Fourier's Law. The equa- 
tion also reduces to Fourier's Law for steady state conditions 
even with non-zero Zq and zr. In addition to equation (1), 
there are higher order DPL models involving, for example, 
Zq: [1, 3]. These higher-order models are not considered here. 

The one-dimensional energy equation for an incom- 
pressible solid with no internal heat generation or absorption 
is 

dT Oq 
p C ~ -  = - ~ .  (2) 

Combining equations (1) and (2), and treating p, C, k and 
thermal lags as constants while eliminating q, leads to the 
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NOMENCLATURE 

a, A parameters defined with equation (6a) 
b parameter defined with equation (7a) 
B ratio of  thermal lags = (1/2)(zT/Zq) 
Cw speed of thermal wave for hyperbolic 

conduction 
C specific heat 
L,/2 integrands defined by equations (6a) and 

(7a), respectively 
/3, 14 integrands defined by equations (1 la) and 

(12a), respectively 
k thermal conductivity 
p parameter for Laplace transform 
q heat flux 
q0 heat flux at x = 0 
t time 
T temperature 
T~ initial temperature 
To temperature at x = 0 
u dummy integration variable in equation 

(10) 
x location 
Xw location of  thermal wave-front for 

hyperbolic conduction. 

Greek symbols 
thermal diffusivity = k/(pC) 
dimensionless time = t/(2rq) 

6 dimensionless location = x/[2(o~zq) 1/2] 
6w dimensionless location of  thermal wave- 

front for hyperbolic conduction 
0 dimensionless temperature for slab with 

constant surface temperature 
= (T--  r ,) /(ro--  TO 

0 dimensionless temperature in Fourier space 
0 dimensionless temperature in 

Fourier/Laplace space 
parameter for Fourier sine transform 

41,  42 parameters defined by equations (8a) and 
(8b), respectively 

p density 
Zq, zT thermal lags defined with equation (1) 
¢p dimensionless temperature for slab with 

constant surface heat 
flux = ( T -  Ti)k/[qo(~Z q) 1/2] 

%~mp jump in surface temperature for hyperbolic 
conduction 

~k dimensionless heat flux = q(x, t)/qo. 

one-dimensional DPL heat conduction equation for tem- 
perature T(x, t) : 

02T OT 02T 03T 
- -  = ~ - -  + ~ z T  ( 3 )  

Zq Ot 2 + ~ Ox 2 Ot Ox 2 

with thermal diffusivity a. In equation (3), 02T/Ot 2 represents 
thermal waves induced by rq while d3T/8tOxZ represents 
smoothing of the waves by Zr. 

Alternatively, combining equations (1) and (2) while eli- 
minating T gives the analog to equation (3) for one-dimen- 
sional heat flux where q(x, t) replaces T in equation (3). This 
analog is used later for the slab with constant surface heat 
flux. 

Solutions to DPL problems converge to corresponding 
Fourier (classical diffusion) solutions when enough time 
elapses after thermal disturbances end. ("Corresponding" 
means all aspects of DPL and Fourier problems are identical 
except for their different conduction models.) At short times, 
however, DPL solutions show non-Fourier diffusion-like 
behavior [6]. 

Equation (3) reduces to the hyperbolic heat equation [4, 
5] for zr = 0 and the Fourier heat equation for Tq = T T = 0. 
For  steady state conditions, equation (3) reduces to the Four- 
ier equation even for non-zero Tq and zT. Further, solutions 
to problems governed by equation (3) are equivalent to cor- 
responding Fourier solutions when zq = zr and initial tem- 
peratures are not changing with time [2]. Also, equation (3) 
is equivalent [2] to a "two step" model [7] for microtime 
heating of  metals. Hence, solutions to DPL problems posed 
with equation (3) can be solutions to problems involving the 
"two step" model. Finally, equation (3) is analogous to an 
equation for momentum transport in a viscoelastic (non- 
Newtonian) liquid. Thus, solutions to some viscoelastic 
problems can be adopted for DPL problems, as described 
later. 

2. CONSTANT SURFACE TEMPERATURE 

2.1. Formulation 
The semi-infinite slab occupies the half-space x > 0 and is 

initially at temperature T~. At t = 0 + the surface along x = 0 

is suddenly raised to constant temperature To. With the for- 
mulation of  [6], equation (3) for the transient temperature in 
the slab becomes 

020 ~0 020 ~30 
- -  + 2 ~  = - -  + B  ( 4 )  
0[32 ap 062 0[3 062 

with dimensionless temperature 0(6, r)  = ( T -  Ti)/ ( T o -  Ti), 
time f l=t / (2rq)  and location 6=x/[2(~Zq)m]. Also, 
B = ½ (zr/Zq) is the dimensionless ratio of  thermal lags where 
B = 0 and B = 1/2 correspond to hyperbolic and Fourier 
conduction, respectively. Non-zero values of  B cited thus far 
[3] range from approximately 5 x 10 4 for liquid helium to 
100 for metals. 

The initial and boundary conditions for the slab are 

00(6, 0) 
0(6, 0) - - -  = 0 (4a,b) 

0[3 

0(0, r) = H(fl) (4c) 

0(6 ~ ~ ,  [3) ~ 0 (4d) 

where H([3) is the unit step function. 

2.2. Solution 
The problem of equations (4)-(4d) is solved here by first 

taking the Fourier sine transform of  each term in the equa- 
tions to eliminate 6-derivatives. This transform reduces equa- 
tion (4) to an ordinary differential equation involving only r -  
derivatives. The definition of  this transform with parameter 4 
is 

0(~, r )  = (2/~) ~/2 0(6, [3) sin (~6) d6 (5a) 

with inverse transform 

0(6, r)  = (2/n)'/2 0(~, r )  sin (~6) d~. (5b) 

Next, using the Laplace transform to eliminate r-derivatives 
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in the ordinary differential equation results in an algebraic 

expression for the double-transformed temperature O(4,p) 
where the tilde indicates Laplace transform with par- 
ameter p. 

Finally, taking the inverse Laplace transform of  0(4,P), 
followed by the inverse Fourier sine transform of  the result- 
ing expression for 0(~, fl), gives the solution for 0(6, fl) when 
B~> 1/2: 

0B~>1/2 = 1 - 1  f ~ l l d 4  (6) 
z j o  

where 

I~ = ~ e x p  (--Aft~X) 

x [(2 - B42) sinh (aft) + 2a cosh (aft)] (6a) 

with A = (2+B42) and a = (A2-4~2)m/2. The integral in 
equation (6) must be evaluated numerically except for the 
Fourier case of  B = 1/2 when the equation reduces to the 
widely-available Feurier solution (e.g. [8]). For numerical 
evaluation 11 has the form 0/0 at ~ = 0, but L'H6pital 's Rule 
shows Ii - 26 there  

Equation (6) applies only to B >/ 1/2 because the argument 
of  the square root in a becomes negative when B < 1/2 and, 
as described shortly, ~1 < ~ < ~2. However, when the argu- 
ment is negative, factoring out ( -  1) 1/2 = i in every appear- 
ance of  the square root in equation (6a) gives for B < 1/2: 

_ { |  1 f (" 11 /"~ i'o~ ) 0n<1/2 = 1-- d¢+/ 1204+ / l, d4~ (7) 

where 

sin(~6) 2 
12 = ~ -  exp ( -  A/?/2)[(2- B~ ) sin (b/~) 

+2b  cos (bfl)] (7a) 

and b = (4~2--A2)1/2/2. Equation (6a) leads to equation 
(7a) by using the identities: sinh(ibfl)= i sin(bfl) and 
cosh (ibfl) = cos (bfl). 

The integrationlimits ¢1 and 42 in equation (7) are the 
values where (A 2 -  4~2), argument of  the square root in a, 
changes sign from + to - ,  and - to + ,  respectively. Thus, 
the argument is negative for 41 < 4 < ~2. Consequently, the 
three integrals in equation (7) result from dividing the entire 
integration range of  ~ into subintervals corresponding to 
positive and negative arguments of the square root in a, 
where 12 corresponds to a negative argument. These values 
of  ~l and 42 are found by solving (A 2 -  4~ 2) = 0 and rejecting 
negative roots since 4/> 0 : 

¢1 = [2(1--B)--2(1-2B)'/2]l/2/B (8a) 

2 = [2( 1 - B) + 2( 1 -- 2B) 1/211/2/B. (8b) 

For numerical evalu ation, the integrands in equation (7) have 
the form 0/0 at ¢~ and 42, but L 'Hrpital 's  Rule shows 

11 and 12 = ~ e x p ( - A f l / Z ) [ Z + f l ( 2 - B ~ 2 ) ]  (9) 

with 4 representing ~1 or ~2. For B = 0, however, equation 
(9) pertains only to ~1, since ¢1 = 1 and ~2 = ov for this value 
of  B. 

2.3. Alternative to previous solutions 
In contrast to the solution procedure just summarized, 

Reference [6] solves the problem of  equations (4)-(4d) using 
the Laplace transform followed by contour integration to 

obtain the inverse transform. Subsequent discussion in [6] 
involves only B > 1/2. 

Although not reported in [6], its solution is restricted to 
B f> 1/2 because of  the contour integration. Reference [9] 
identifies this restriction in the analogous context of  a vis- 
coelastic liquid, where a solution corresponding to B < 1/2 
using a different contour is obtained for the analogous vis- 
coelastic problem. In this analogy a half-space of  liquid, 
initially quiescent, is subjected to a step increase of  velocity 
along its surface. 

While all values of  B are accounted for by the previous 
solutions in [6] and [9], the new solution given here by equa- 
tions (6) and (7) can be a convenient alternative. For instance, 
equation (6) requires only one numerical integration while 
the solution in [6] requires two numerical integrations. 

3. CONSTANT SURFACE HEAT FLUX 

3.1. Formulation 
The semi-infinite slab occupies x > 0 and is initially at T~ 
while heat flux throughout the slab is initially zero. At t = 0 ÷ 
the constant heat flux q0 is applied suddenly and uniformly 
along the surface x = 0, so surface temperature increases for 
t > 0. A solution for T(x, t) in the slab could be derived by 
solving equation (3) using equation (1) to specify the bound- 
ary condition of  constant heat flux along x = 0. Unfor- 
tunately, this boundary condition would be a complex 
relation between q0 and T(0, t). 

To avoid this complexity an alternative approach is taken 
here. This approach takes advantage of the analogy between 
governing equations for T(x, t) and q(x, t) noted previously 
with equation (3), and the solution just obtained for the 
problem with constant surface temperature : First, the solu- 
tion for q(x, t) in the slab with constant surface heat flux is 
obtained by analogy with the previous problem of  constant 
surface temperature. Then, the desired solution for T(x, t) 
with constant surface heat flux is obtained by inserting this 
q(x, t) into equation (2) (the energy equation) and integrating 
for temperature. Hence, by defining the dimensionless heat 
flux ~b(6, r ) =  q(x, t)/qo for the slab with constant surface 
heat flux, equations (4)-(4d) become the analogous problem 
for ~, after replacing 0 by ft. 

Solution 
Equations (6) and (7) give the solution for ~b in the 

slab with constant surface heat flux after replacing 0 by 
~O. Then, defining the dimensionless temperature 
tp(6,fl)=(T-Ti)k/[qo(CtZq) I/2] for this slab and noting 
~o(6, 0) = 0, integrating the dimensionless form of  equation 
(2) gives 

;0(+u 
where u is a dummy integration variable for ft. Next, inserting 
equation (6) for 0 into equation (10), evaluating the 6-deriva- 
tive with Liebnitz's Rule, then interchanging the orders of  
integration and performing the fl-integration gives for 
B~> 1/2: 

1:0° tPB>~ 1/2 = 5  lad~ (11) 

where 

13 = cos (¢6) [4a-- exp ( - Aft~2) 
a¢ z 

× {[4+ 2~2(B- l)]sinh(afl)+4acosh(afl)}]. ( l l a )  

Equation (11) reduces to the Fourier solution [8[ for B = 1/2. 
For other values of B the integral in the equation must be 
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evaluated numerically using 13 = 2fl at ~ = 0, found with 
L'H6pital 's  Rule. 

For B < 1/2, inserting equation (7) for ~, into equation 
(10) leads to 

1 f / "~, (% /'~ "1 ~o.<,/:=;~| hd¢+| 1 4 d ¢ + |  I3d¢~ (12) 
kdO Je t  J~2 

where 

/4 = cos (¢6) [4b - exp ( -  Aft/2) 

x {[4 + 2~:(B-- 1)] sin (bfl) + 4b cos (bfl)}]. (12a) 

The values of  ~ and ~2 are still given by equations (8a) and 
(8b). Also, since L and 14 have the form 0/0 at ~ and ~2, 
L'H6pital 's  Rule shows 

13 and 14=2c°s(¢6){2--exp(--Af l /2)  

× ( 2 + f l [ 2 + ¢ 2 ( B -  1)])} (13) 

where ~ represents ¢~ or ~2. For  B = 0, however, equation 
(13) pertains to only ~ ,  since ~ = 1 and ~2 = ov for this 
value of B. 

3.2. Illustration of  results 
The behavior of  ~0 is illustrated here treating B as a 

parameter, by varying zr while holding Zq constant.  The 
hyperbolic case B = 0 is included for comparison since 
experiments with processed meat show good agreement with 
hyperbolic predictions [10]. For  the hyperbolic case, a j ump  
in surface temperature occurs immediately upon application 
of the heat flux, followed by propagation of  a thermal wave 
into the slab [11]. In terms of the dimensionless variables 
used here this jump is ~Ojump = 1 at time fl = 0 ÷. Also, the 
transient location of  the thermal wave-front is 6w = fl, 
obtained by converting Xw = cwt into dimensionless variables 
along with Zq = ~/c 2 [2], where cw is the thermal wave speed. 

The numerical integrations for equations (11) and (12) 
were performed with Simpson's  Rule. Convergence studies 
showed upper limits of  1 x 10 5 to simulate infinity, along with 
sufficient subdivisions of integration intervals, gave accurate 
integrations since higher limits showed < 1% change in ~o. 
Also, results obtained with equations (11) and (12) were 
tested by checking for agreement with independent solutions 
for the Fourier (B = 1/2) [8] and hyperbolic (B = 0) [11] 
cases. 

Figure 1 shows surface temperature of  the slab vs time for 
B ranging from 0 to 1/2. The hyperbolic case (B = 0) shows 
its j ump in surface temperature at fl = 0 ÷. Because ZT = 0 
for the hyperbolic case, the j ump  results from delayed con- 
duction into the slab caused by the thermal inertia effect of  
Zq. Consequently, this delay initially confines heat to the 
surface. In comparison, tbr the DPL case (B > 0) there is 
no temperature j ump  because the added effect of  r r  # 0 
promotes conduction into the slab. However, for sufficiently 
small B (e.g. 0.2) the rapid increase in surface temperature 
shortly after f = 0 can closely approximate the temperature 
jump of  the hyperbolic case. 

The figure also shows that  increasing B reduces the initial 
rate of  increase in surface temperature, because zr promotes 
conduction into the slab rather than confining heat to the 
surface. As time increases, however, all temperatures con- 
verge to the Fourier case (B = 1/2). 

Next, Fig. 2 shows surface temperature vs time for 
1/2 ~< B ~< 100. The figure further illustrates that increasing 
B reduces the initial rate of  temperature increase. Al though 
not  shown here, all temperatures eventually converge to the 
Fourier case. Also, it is interesting to note the cor- 
respondence between the dimensionless variables of  the fig- 
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Fig. 1. Surface temperature vs time for semi-infinite slab with 
constant  surface heat flux : 0 ~< B ~< 1/2. 
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Fig. 2. Surface temperature vs time for semi-infinite slab with 

constant  surface heat flux : 1/2 ~ B ~ 100. 

ure and actual variables. For instance, using zq ,~ 0.7 x 10 -~2 
s for gold [2], the dimensionless time fl = 50.0 corresponds 
to the actual time of  7.0 x 10 - "  s. This time is comparable 
to, for example, time scales involved with microtime laser 
heating of  metals [7]. 

Figure 3 shows the effect o f  B on internal temperature 
profiles at the representative time fl = 0.1. The hyperbolic 
case (B = 0) shows its thermal wave with wave-front located 
at 6w = 0.1. The wave-front is the location where temperature 
first begins to increase in overcoming the thermal inertia 
effect of  zq. As B increases for the DPL case, however, the 
wave-front is progressively smoothed by the increasing effect 
of  Zr promoting conduction into the slab. However, for 
sufficiently small B (e.g. 0.01) the DPL profile can closely 
approximate the hyperbolic profile. This smoothing of  pro- 
files and promotion of  conduction is consistent with inde- 
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Fig. 3. Effect of  B on internal temperature profiles for semi- 

infinite slab with constant surface heat flux. 
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7. Qiu, T. Q. and Tien, C. L., Femtosecond laser heating 
of  multi-layer metals--I .  Analysis. International Journal 
of Heat and Mass Transfer, 1994, 37, 2789-2797. 
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pendent DPL restdts for the problem of  constant surface 
temperature [12]. 

Finally, Fig. 3 shows that increasing B "flattens" the tem- 
perature profiles because each profile reflects the same 
amount of  energy provided by the surface heat flux. Thus, 
as B increases and profiles extend deeper into the slab, they 
must flatten to ret~ect the same energy content. Also, some 
effect of conduction always extends to 3 --, oo for B > 0 since 
equation (3) is parabolic [13]. (However, higher order DPL 
models [1, 3] can predict non-Fourier thermal waves where 
conduction does not extend to ~ ~ oo.) All profiles converge 
to the Fourier case: (B = 1/2) as time increases. 

In conclusion, Figs. 1-3 show the DPL model can predict 
surface and internal temperatures that are very different from 
predictions based on Fourier's Law. Further, DPL pre- 
dictions can closely approximate those of hyperbolic con- 
duction for sufficiently small values of  thermal lag ratio zv/%. 
All predictions converge to those of Fourier's Law at 
sufficiently large time. 
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APPENDIX 

Here, equation numbers followed by R refer to those in 
Reference [1] while A denotes equations appearing only in 
this Appendix. Other equation numbers and all reference 
numbers refer to those in the main body of this Note. 

The solution for a semi-infinite slab with constant surface 
temperature given by equation (2.61R) on p. 47 of  [1] is 
correct, but pertains to a different problem than the solution 
given by equations (6) and (7) in this Note. This difference 
stems from the statements of boundary conditions at the 
surface of the slab. Specifically, equation (2.27R) on p. 36 of 
[1] states 0(0,/~) = 1 for/3 > 0, as implied by equation (2.21 R) 
on p. 35. However, equation (4c) of  this Note states 
0(0, r) = H(fl), where H(fl) = 0 for fl < 0 and H(fl) = 1 for 
fl > 0 [14]. The consequence of  these statements becomes 
clear by examining an intermediate stage of  the analysis from 
this Note, then contrasting this stage to the analysis in [1]. 

For the slab with constant surface temperature in this 
Note, taking the Fourier sine transform of  each term in 
equation (4) to eliminate f-derivatives gives 

d2A dO ,/2 2- d t 2 2- 
+ 2 ~  = (2/n) ¢H(/~)--¢ O+ B~[(2/n)  / ¢H(~)-¢ O] 

dfl 2 

(A1) 

where H(~) enters equation (AI) through the transform of  
terms in equation (4) involving 3-derivatives. Then, taking 
the E-derivative shown in the last term of  equation (A 1), and 
noting dH([J)/dfl = A(~) where A is the delta (unit impulse) 
function [14], leads to 

d20 2 dO 2- 
- -  + ( 2 + B {  )Ta + {  0 = (2/rO'/2{[H(B)+BA(B)]. (A2) 
d/~ 2 up 

Solving equation (A2) with its initial conditions as described 
previously in this Note results in the solution given by equa- 
tions (6) and (7). This solution reduces to the Fourier case 
for B = 1/2, as it should. Hence, equations (6) and (7) serve 
as the starting point in this Note for solving the problem of  
the semi-infinite slab with constant heat flux at its surface. 

In contrast to using H(/7) for the slab with constant surface 
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temperature as in this Note, using the boundary condition 
0(0, fl) = 1 from Reference [1] replaces each occurrence of  
H(fl) by 1 in equation (A1). Thus, BA(fl) does not arise in 
the analysis on p. 47 of  [ 1] even though that analysis also uses 
the Fourier sine transform. Further, equation (A2) reverts to 
equation (2.57R), leading to the solution given by equation 
(2.61R). This solution is not adopted for this Note because 
it does not reduce to the Fourier case for B = 1/2. The 
solution, however, does not affect the remainder of  [1] since 
it is not used in further developments there. Also, for B = 0 
the solutions in this Note and [1] become identical because 
BA(fl) vanishes from equation (A2). 

Consequently, the solutions in this Note and [1] are differ- 
ent because the Fourier sine transform introduces the bound- 
ary condition into the transform of  equation (4) where it is 
then subjected to the fl-derivative. Hence, while the two 
statements of  boundary conditions are the same in practical 

terms, the formal statement 0(0, fl) = H(fl) "captures" the 
suddenly-raised surface temperature at fl = 0 ÷ because its 
derivative gives the delta function. However, 0(0, fl) = 1 does 
not "capture" this temperature change because its derivative 
is zero. Instead, 0(0, fl) = 1 effectively corresponds in this 
instance to the different problem of surface temperature held 
at the value of  1 for all time, with conduction into the solid 
beginning at fl = 0 +. 

Finally, using the Laplace transform to eliminate fl-deriva- 
tives as the first step of analysis, as done in [6] and on p. 37 
of [1], renders the distinction between H(fl) and 1 at the 
surface unimportant because their fl-derivatives do not arise 
in subsequent steps. In general, however, the solution of 
future DPL problems using the approach taken in this Note 
would require formal statements of time-dependent bound- 
ary conditions. 


